46 research outputs found

    On a Class of Martingale Problems on Banach Spaces

    Full text link
    We introduce the local martingale problem associated to semilinear stochastic evolution equations driven by a cylindrical Wiener process and establish a one-to-one correspondence between solutions of the martingale problem and (analytically) weak solutions of the stochastic equation. We also prove that the solutions of well-posed equations are strong Markov processes. We apply our results to semilinear stochastic equations with additive noise where the semilinear term is merely measurable and to stochastic reaction-diffusion equations with H\"older continuous multiplicative noise.Comment: Incorporated referee's comments; final versio

    Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

    Full text link
    We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW_H(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.Comment: Revision based on the referee's comment

    Simplified models of electromagnetic and gravitational radiation damping

    Get PDF
    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relation of the kinetic model for which theorems were proved to certain many-particle models with radiation damping is exhibited

    Existence of axially symmetric static solutions of the Einstein-Vlasov system

    Full text link
    We prove the existence of static, asymptotically flat non-vacuum spacetimes with axial symmetry where the matter is modeled as a collisionless gas. The axially symmetric solutions of the resulting Einstein-Vlasov system are obtained via the implicit function theorem by perturbing off a suitable spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page

    Approximating the coefficients in semilinear stochastic partial differential equations

    Get PDF
    We investigate, in the setting of UMD Banach spaces E, the continuous dependence on the data A, F, G and X_0 of mild solutions of semilinear stochastic evolution equations with multiplicative noise of the form dX(t) = [AX(t) + F(t,X(t))]dt + G(t,X(t))dW_H(t), X(0)=X_0, where W_H is a cylindrical Brownian motion on a Hilbert space H. We prove continuous dependence of the compensated solutions X(t)-e^{tA}X_0 in the norms L^p(\Omega;C^\lambda([0,T];E)) assuming that the approximating operators A_n are uniformly sectorial and converge to A in the strong resolvent sense, and that the approximating nonlinearities F_n and G_n are uniformly Lipschitz continuous in suitable norms and converge to F and G pointwise. Our results are applied to a class of semilinear parabolic SPDEs with finite-dimensional multiplicative noise.Comment: Referee's comments have been incorporate

    Diffraction of complex molecules by structures made of light

    Get PDF
    We demonstrate that structures made of light can be used to coherently control the motion of complex molecules. In particular, we show diffraction of the fullerenes C60 and C70 at a thin grating based on a standing light wave. We prove experimentally that the principles of this effect, well known from atom optics, can be successfully extended to massive and large molecules which are internally in a thermodynamic mixed state and which do not exhibit narrow optical resonances. Our results will be important for the observation of quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure

    Resonances in a two-dimensional electron waveguide with a single delta-function scatterer

    Full text link
    We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single delta-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasi-bound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption and show the influence of the quasi-bound states on these two quantities.Comment: 5 pages, 6 figures, to be published in Physical Review

    The STRANDS project: long-term autonomy in everyday environments

    Get PDF
    Thanks to the efforts of the robotics and autonomous systems community, the myriad applications and capacities of robots are ever increasing. There is increasing demand from end users for autonomous service robots that can operate in real environments for extended periods. In the Spatiotemporal Representations and Activities for Cognitive Control in Long-Term Scenarios (STRANDS) project (http://strandsproject.eu), we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots and deploying these systems for long-term installations in security and care environments. Our robots have been operational for a combined duration of 104 days over four deployments, autonomously performing end-user-defined tasks and traversing 116 km in the process. In this article, we describe the approach we used to enable long-term autonomous operation in everyday environments and how our robots are able to use their long run times to improve their own performance
    corecore